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ABSTRACT 
 
 
 
The United States Navy needs creative ways to design multi-function phased 

array radars. This thesis proposes that Genetic Algorithms, computer programs that 

mimic natural selection to arrive at innovative solutions to complex problems, would be 

particularly well suited to this task. The ability of a Genetic Algorithm to properly predict 

the behavior of an array antenna with randomly located elements was examined with 

encouraging results through the construction and measurement of a test array. 

Comparison of test data to Genetic Algorithm and Method of Moments calculations 

showed significant qualitative agreement in the antenna test patterns of a thin, randomly 

distributed array. Areas of disagreement between the test article pattern and the 

calculated ones were traced to systematic errors in the anechoic chamber and alignment 

error during antenna positioning. The final experiment to demonstrate beam steering was 

not completed due to lack of time and poor response of mechanical phase shifters. 

Despite the inability to demonstrate beam steering, the early experiments demonstrate the 

significant potential for using Genetic Algorithms for complex shipboard phased array 

radar antenna design. 
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I. INTRODUCTION  

A. MOTIVATION  

Naval warfare has changed dramatically in the last hundred years. The great close 

range gunfights of the battle line gave way to duels to the death between fleets that never 

got close enough to see one another, except through the eyes of young pilots. The 

revolutionary advances of the electronic age brought a whole new dimension to naval 

warfare. Warships must now contend with a broad range of threats, from inexpensive 

mines to small high speed and high lethality missiles. The range of threats has grown 

exponentially, and as the threat has grown so has the realization that resources to counter 

them are limited and must be chosen wisely. Consequently, new means to ensure the 

warfighter has the information he needs to survive are constantly in demand.  

1. New Needs for New Warships 

Naval architecture is in the midst of a major revolution. Warships are now being 

designed for minimal radar cross section (RCS) and minimal manning requirements. 

Systems put on board must be low maintenance and able to function in all environments, 

both natural and man made. Indeed, the Navy is currently looking for a new generation of  

advanced multi-function array radar (MFAR) systems to equip the next generation of 

surface combatants, the DD(X) class. The engineering plant must be capable of both fast 

speeds and efficient operation. Communications and information systems must be 

seamless. Combat systems must be reliable and lethal. The problem lies in developing 

innovative methods of meeting all of these requirements simultaneously. Figure 1 shows 

an artist’s conception of DD-21, the now defunct predecessor of the DD(X) program. 

DD-21 was cancelled for several reasons, not the least of which was the lack of a viable 

radar design. A method needs to be found that would allow high volume search radars 

suitable for such missions as Theater Ballistic Missile Defense (TBMD) and Fleet Air 

Defense (FAD) as well as surface surveillance for Surface Warfare (SUW) to be 

constructed more reliably and cheaply, and be able to be put on smaller ships with no loss 

of capability. Unfortunately, no such process exists today. Much of the design of array 

antennas is based on traditional approaches. Modern array radar antennas are large planar 



2 

arrays, heavy, maintenance intensive, easily recognizable and vulnerable. In fact, these 

arrays and the support structure they require are often the driving factor in the 

construction of a ship. 

 
Figure 1.   DD-21 Artist’s Conception, Predecessor to DD(X) (From: January 99 All 

Hands)1 

 

2. A Solution to the Need 

What if another option existed? The ability to design the ships structure from the 

standpoint of survivability, sea-keeping and RCS reduction, with the ship’s sensors and 

communications added to the design later and placed wherever convenient for power and 

reducing topside weight. The radars designed this way would also have the advantage of 

having extremely good resolution, as the angular resolution is proportional to the ratio of 

the wavelength, λ, over the aperture width of the array, D. Instead of the compact width 

of a conventional planar array, the aperture width might conceivably be approximately 

the overall length of the ship, with consequent dramatic improvement in beam width, or 

the ability to use lower frequencies and maintain the same currently available resolution. 

Such a ship wide distributed array is possible through the use of a branch of computer 

programs known as Genetic Algorithms (GA) that use logic modeled on natural selection 

in nature to achieve a variety of tasks, from optimizing a system to searching large 

databases or even adaptively controlling electronics.  
                                                 

1 Lockheed-Martin artist’s conception of DD-21 taken from the Navy Media Center Website, All 
Hands publication section. Retrieved June 8, 2002 from the World Wide Web: 
http://www.mediacen.navy.mil/pubs/allhands/Jan99/janpg48.htm. 
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The purpose of this thesis is to show that Genetic Algorithms have the potential to 

become a powerful design tool for ship-based phased array antennas.  

Planar arrays of regularly spaced elements are currently in use because of their 

simplicity in design and construction. However, the benefit of using a Genetic Algorithm 

is its ability to adapt to meet complex criteria over a series of several generations. The 

program effectively “evolves“ a solution over the course of time. Such evolved solutions 

are rarely intuitively obvious, even to experienced professionals in the field, because the 

algorithm is not tied to any preconceived ideas of how to proceed. The GA therefore has 

the capacity for innovation that would be difficult for a human engineer. 

The process of using a Genetic Algorithm for antenna design would begin with 

determining the required specifications for the antenna. A series of GA program runs 

would be made to determine the evolved array configuration that optimally fits those 

criteria. Constraints can be placed on the program that limit it to determining solutions 

that are workable in reality, such as denying the algorithm the choice of placing elements 

on the hull near the waterline or on the superstructure in the same locations as engine 

intakes and access doors. Allowing the algorithm to choose from any vacant location is 

what provides the benefit of the GA over conventional methods. The GA has no loyalty 

or inclination toward previous solutions. Preference is given only to optimum 

performance. Furthermore, instead of designing a ship from scratch around the sensors 

and communications suite, RF elements can be distributed throughout available locations 

on any ship design, wherever service connections are convenient. A distributed ship-wide 

array approach would minimize impact on seakeeping and stability, reduce vulnerability 

to damage and allow for significant improvement in angular resolution. As long as the 

GA has been programmed to accurately reflect the hardware that will be used in the 

array, any type of Transmit/ Receive (TR) elements may be used to construct the array. 

Inexpensive commercially available TR elements made from mass produced 

semiconductors could become a viable option for making a distributed ship-wide array a 

real possibility. Cheap, low weight and with almost no maintenance required, 

semiconductor elements might only need a power feed and connections for injecting and 

receiving a digital signal. Other Commercial Off The Shelf (COTS) components could 

also be integrated into radar systems using Genetic Algorithms for optimization. 
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GA’s are not limited to any specific constraint beyond the imagination of the 

programmer and the limits of what the current level of technology can translate into 

hardware. For example, Genetic Algorithms could be used to provide tactically realistic 

means for utilizing bistatic radar configurations, both on a single platform and between 

several ships. GA’s could also provide a method for providing optimized settings for 

currently existing arrays specific to the propagation environment. 

A good example of a future vessel that might benefit from the use of a GA-based 

design tool is the Littoral Combat Ship (LCS). The LCS is a part of the upcoming DD(X) 

family of ships and will concentrate primarily on wresting control of near shore areas 

from hostile forces. Because this ship’s inshore mission requires a vessel of small size, no 

air search capability is currently planned, however the use of a Genetic Algorithm to 

place array elements in various topside locations might allow the introduction of an air 

surveillance capability, without compromising displacement, lethality, reduced signature 

or speed. Indeed, this capability would seem necessary to provide the ability to control 

unmanned air and surface vehicles, another capability envisioned for the LCS. 

Genetic Algorithms therefore have the potential for the design of advanced radar 

antennas with complex geometries, but do they maintain the necessary fidelity to reality 

for this concept to be truly applicable to the design process? 

B. SCOPE AND ORGANIZATION 

1. Scope 

This thesis will test a portion of a specific GA program, Athin.m, with the 

performance of a physical array antenna through experimental measurement, but will not 

attempt to leap directly into validating the design capabilities of the program. 

The portion of the Athin.m code to be tested is that which builds the antenna 

patterns for the program and thereby allows it to calculate the effectiveness of a given 

solution. The parameters for the test array will be determined without the assistance of 

the GA.  

2. Primary Research Question 

The cornerstone for any GA program is the fitness function that quantifies the 

effectiveness of a potential solution. Given that the Athin.m Genetic Algorithm code 
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derives this claculation by first generating an antenna pattern, does the Athin.m Pattern 

Builder function sufficiently reflect reality to justify using it as a design tool for future 

phased array radar antennas? 

3. Organization 

Chapter II provides a functional overview of Genetic Algorithms in general and 

the Athin.m program in particular. A description of what defines a GA is followed by 

discussion of the logical structure and mechanisms used in genetic programming. The 

Athin code is then  presented with actual values used to illustrate the programmer’s 

decision making process. 

Chapter III begins with a discussion of the experimental objectives. After a brief 

discussion of the instrumentation used for measurements, a detailed description of the 

construction of both variants of the test array is presented. The three steps in the 

measurement process are then discussed, in the order they were taken. 

Chapter IV provides a summary of the experimental results followed by 

suggestions for further research into the use of GA’s for phased array design. 

Appendix A provides a glossary of terms and abbreviations used throughout this 

thesis. 

Appendix B provides a complete program listing of the Athin.m script file for 

MATLAB. 

Appendix C provides the random element locations in the X-Y plane used for all 

the experimental computational purposes. 

 

 

 

 

 

 



6 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



7 

II. GENETIC ALGORITHMS  

A. NATURAL SELECTION IN THE COMPUTER AGE  

The concept of natural selection has been accepted in the biological sciences for 

some time. Biological organisms improve their ability to survive through a generational 

process of optimization. Evolutionary processes occur in biological systems when the 

organism has the ability to reproduce itself, there is a population of such organisms, there 

is variety among the members of the population and that variety can be related to the 

ability to survive in the environment.2 Traits which assist in survival are continued and 

improved through the mechanism of reproduction. Individuals in a population that are the 

best suited to survive generally receive preferential treatment in the procreation process. 

However, it is important to note that not only the best-suited individuals produce 

offspring. The success and health of a population depends as much upon its genetic 

diversity as upon the best individual examples of its membership. Without variety in 

survival characteristics there would be no means of improvement. 

Genetic Algorithms are written along similar lines in order to optimize non-

biological systems at a much faster rate and at much less expense than could otherwise 

occur through trial and error manufacturing or simulation. The computer’s ability to do 

tedious repetitive calculations at high speed allows it to perform iterative processes 

hundreds of thousands or millions of times within a useable timescale for problem 

solving. The difficult part is often not the program run itself, but the determination of 

what the problem is and how it can be put into a program in a form useable by a digital 

processor.  

A Genetic Algorithm proceeds through a succession of generations. Each 

generation is composed of a number of individual population members. These are vectors 

consisting of characterized traits that form a potential complete solution of the problem. 

Figure 2 shows the logical flow of solving a problem using a Genetic Algorithm. Note in 

particular the loop structure. Each iteration of the loop is considered a generation. The 

relatively simple structure potentially allows several thousand generations of evolution to 
                                                 

2 Koza, J. (1992). Genetic Programming. Cambridge, MA: MIT Press. p. 17. 



8 

be completed in only a matter of hours with even modest computing resources. However, 

as a practical matter, the time it takes to complete a loop depends heavily upon how long 

it takes to do the fitness evaluation. Consequently, interesting problems that apply to real 

world needs often have a tendency to get bottlenecked computationally on the evaluation 

step. It should also be clear that the loop structure as shown will continue indefinitely 

until stopped in some way. The question of when to halt the evolutionary process is 

another consideration for the programmer. 

 
Figure 2.   Genetic Algorithm Logic Flow (From Johnson, 15 August 20013) 

 

“Fitness” is the criterion to be optimized and is the basis for selection of 

individuals from the population of each generation. The method used to evaluate the 

fitness of individual population members, as well as the four commonly used 

reproduction methods for determining the population of each generation will be covered 

in more detail. 

 

 
                                                 

3 From a slide presentation given by Dr. Rodney Johnson developed for the Institute for Joint Warfare 
Analysis (IJWA) at the US Naval Postgraduate School, “Phased-Array Antenna Patterns via Genetic 
Algorithms”, on 15 August 2001. 
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B. MECHANISMS IN GENETIC ALGORITHMS 

Genetic algorithms use several mechanisms to evolve a system over the course of 

the run. Selection of which mechanisms to use, and the probability each will have, is a 

critical decision for the programmer. Since Genetic Algorithms are an iterative process, 

modeling either the fitness criteria or individual incorrectly can cause the program to 

diverge from answering the problem of interest to the programmer. However, by self-

correcting over the course of a large numbers of these iterations, using assumptions and 

criteria based on proven theory, the algorithm has the capability of finding a set of most 

favorable solutions to highly complex problems that might otherwise take years of 

measurement and data collection. 

1. Fitness Measurement 

The initial item the programmer must address is how to evaluate the traits of an 

individual population member against the desired outcome. This is known as a “fitness 

measurement,” and it must be performed for each individual during each consecutive 

generation of the run in order to be able to faithfully rank the individuals’ suitability to 

deliver the desired result. Defining the fitness function is the most critical step in the 

process. A failure to effectively shape the question at hand in a form that can be 

translated through a programming language into a measurement of fitness for each 

individual relative to each other prevents the preferential treatment of the best suited 

individuals to the next generation. This allows too many of the weaker members to move 

on and the population will continue to be characterized by randomness. Also important is 

the shaping of the fitness criteria based on the reality of the problem. In using a Genetic 

Algorithm to design and optimize an electrical or mechanical system for example, the 

actual performance parameters and physical limits of such a system must be faithfully 

reflected in the mathematics used to determine the relative ranking of the individuals. 

Without this fidelity to the physical world you might very well get an optimized solution 

to the problem posed, but that problem might not reflect the true complexity of the 

environment it must exist in and is therefore useless as anything other than an academic 

exercise. The fitness calculation may therefore be of a very complex nature. 
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The process is twofold. The fitness of each individual must first be evaluated and 

compared to its peers, then individuals must be selected for a new population. The traits 

for each population member are evaluated using the fitness criteria, usually involving an 

analytic or numerical evaluation of a mathematical formula. The criterion must provide 

enough resolution that two individuals will usually have different values in order to be 

able to rank the entire population. For example, in the case of a simple radar antenna 

design problem, the fitness assessment might involve determining the antenna gain for 

each individual. The traits of the individual might be those elements of gain which are 

under the control of the designer: radar frequency, f, the antenna aperture efficiency, ρa, 

which is controlled by antenna shape and the physical area of the antenna, A. The fitness 

assessment for each member would involve using the member’s traits to calculate 

antenna gain in decibels, GdB.4 









= 2

24
log10

c
Af

G a
dB

πρ
.       (1) 

Where c is the speed of light. The resulting gain would allow the individuals to be ranked 

from most fit, meaning highest gain, to least fit. Note that the fitness criterion is not 

expressed as a set binary limit, such as “above 30 dB,” as this limits the ranking of 

individuals to only two categories.  

2. Population Selection 

The population of any GA is composed of individuals. Each individual has 

discrete traits that characterize the individual and are directly applicable to the 

mathematics involved in determining fitness. Generally speaking, the initial population is 

determined randomly for the first generation, and by the fitness assessment, selection, 

and creation of new individuals in subsequent generations. 

a. Seeding 

A refinement to population selection is the concept of “seeding” the initial 

population of a Genetic Algorithm with the results of a previous run or predetermined 

configurations that represent probable solutions based on known facts, problem solver 

experience or even the best ranked results from previous runs. Not only does the 
                                                 

4 Skolnik, M. (2001). Introduction to RadarSystems, 3rd edition. New York: McGraw-Hill. p 6. 



11 

introduction of evolved, known or probable solutions cause more rapid convergence, but 

it also allows the GA to be adjusted between runs in order to better track toward the 

desired goal. 

b. Fitness- and Rank-Proportional Selection 

Once the fitness of each individual has been determined the following step 

in formation of a new generation involves selecting the individuals that will be allowed to 

contribute genetic material to the next population through one of the genetic operators, 

described in detail later. Individual population members are selected for membership in 

the next generation by their relative fitness ranking with one of several methods, two of 

which are described below. Sometimes, a probability of selecting less fit individuals over 

more fit ones is included to retain some of the diversity of the original population, but the 

more fit ones must always have a higher probability of selection in order for a solution to 

emerge. A broader population diversity will result in slower convergence to the solutions 

of a problem and will require more computational resources and time, but has a greater 

chance of arriving at a better and perhaps unanticipated solution. 

Fitness-proportional selection means that the probability of an individual 

being selected for continuation is weighted based on its performance during the fitness 

evaluation. One common method for fitness-proportional selection involves the creation 

of “bins,” one for each individual present in the population. The size, or length, of an 

individual’s bin is proportional to its assessed fitness. A random number is generated 

within the value range of all the bins, and the individual in whose bin this number falls is 

selected for inclusion in the next generation, after the application of a genetic operator. 

Like pitching pennies into cups of differing sizes, there is a finite probability of selection 

for any individual but the individuals with better fitness scores have a higher probability 

of selection. 

A problem can arise with fitness-proportional selection when the raw 

fitness score values of most of the individuals are close to each other. This is particularly 

evident in later generations of a run, where all the individuals have begun to converge on 

a narrow range of solutions. The method for fixing this problem is to use rank-

proportional selection. In rank-proportional selection, individuals are ranked with an 
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integer value based on their raw fitness score, from 1 for the least fit to the population 

size, n, for the most fit. They are again placed in bins, but the bin size is now proportional 

to the integer ranking. The highest ranked individuals have the largest bins and therefore 

the higher probability of selection. Figure 3 illustrates this difference.  

  

Figure 3.   Fitness-Proportional vs. Rank-Proportional Selection (From Johnson, 15 
August 20015) 

 
3. Generalized Genetic Operators 

Another item of concern to the writer of a genetic algorithm is the method by 

which individual population members will be used in creation of the next generation once 

their fitness has been ranked. There are four methods usually used for this process: 

reproduction, crossover, inversion and mutation, with each of the four having potentially 

independent mechanisms for determining if they occur. Each is normally assigned a 

probability of occurring, with this probability weighted in favor the individual’s fitness 

ranking, thereby giving traits of the most fit the best chance of survival into later 

generations. Using these four mechanisms, a new generation is formed and the fitness test 

is applied once again. 

a. Reproduction 

Reproduction, or the inclusion of an unaltered individual population 

member in the next generation, is the simplest process of promotion for any Genetic 

Algorithm. Figure 4 shows the reproduction to a new generation graphically. When an 

individual population member is selected for reproduction the traits of the member, 

denoted as the vector a1 through an in Figure 4, are copied directly into an available slot 

for a population member in the new generation. No changes or rearrangements are made. 

                                                 
5 Johnson; “Phased-Array Antenna Patterns via Genetic Algorithms”; 15 August 2001 
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Figure 4.   Illustration of Reproduction 

 

The biological equivalent of this process could be seen as either survival of the 

individual or procreation through asexual reproduction, producing an identical copy of a 

single parent in the new generation. This mechanism is often assigned a significant 

probability of occurrence, although not as high as crossover. This same process is 

alternatively called copying or promotion. 

b. Crossover 

Crossover mimics sexual recombination in biological organisms. Starting 

with two parent members of the population, a number of distinct traits are swapped 

between mated pairs to produce two offspring, each different from the other and also 

from their parents, but with “genetic material” common to the family line. Crossover is 

also controlled by probability, again usually weighted in favor of selecting more fit 

individuals as parents. Like reproduction, crossover is usually assigned a relatively high 

probability of occurring, usually exceeding the proportion assigned the other operators. 

The programmer must decide on values for some specific parameters that are not required 

for simple reproduction. Two parents must be selected based on fitness, rather than one. 

The number of traits that will be crossed between mated pairs must be determined, and 

then a process must be included to determine which specific traits this will be. The 

specific traits are often selected randomly to further promote innovative results. Figure 5 

shows an example of the crossover operation at work. 
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Figure 5.   Illustration of Crossover 

 

In the case shown in Figure 5, an individual with traits a1 through an has been selected to 

mate with another member with traits b1 through bn. The programmer has chosen to use a 

three point crossover, and traits with indices 2, 3 and n have been chosen to be swapped 

between the parents. The resulting offspring are uniquely different from each other, and 

each is also different from both parents. Yet both share traits with parents who were more 

than likely to have been ranked higher than the average in fitness. Population members 

whose vectors schemes have few traits may be effected little by crossover operations.6 

c. Inversion 

Inversion is an unusual reproductive mechanism in Genetic Algorithms, 

both for its effect on the selected population entity and because it really has no corollary 

in biological systems. If used at all, the probability of this type of genetic operation is 

often set very low compared to the previously mentioned cases. A single population 

member is chosen at random, again weighted toward the most fit individuals. Again, an 

even number of random indices are chosen, usually two. There is no specific reason why 

only two points must be used for the process, but it keeps the operation simple and avoids 

unnecessary randomization of the traits. The vector is then effectively folded between 

                                                 
6 Holland, J. (1992). Adaptation in Natural and Artificial Systems. Cambridge, MA: MIT Press. p. 97-

106. 
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traits with these two indices. This process is simplest to understand in illustration. Figure 

6 shows a typical inversion operation. 

 
Figure 6.   Illustration of Inversion (After Holland p. 107.) 

 

Any possible rearrangement of traits can be accomplished by successive 

inversions. Also, like crossover, inversion has little effect on populations with individuals 

that have only a small number of character traits.7 

d. Mutation 

Mutation is another probability controlled process which introduces 

random changes to the characteristics of an individual member, encouraging diversity in 

the population as a whole and therefore increasing the chances of a unique and otherwise 

unexpected solution. Directly analogous to the biological process of the same name, 

mutation can be easily applied in two distinct ways by the designer of a Genetic 

Algorithm. Either the probability mechanism can be applied the same way as with the 

other operators, with each individual having a set probability of a mutation somewhere in 

the individual’s traits, with another random process determining which trait is effected, or 

in a more complex manner which can have a dramatically different effect. Unlike 

previous operators, arguably the most effective way to apply this genetic operator is by 

allowing an extremely small but non-zero probability of a random change occurring for 

each trait in all individuals, rather than for the individual as a whole. The probability 

                                                 
7 Ibid. p .107. 
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must be independent of whether mutation occurred in adjacent individuals, or even in an 

adjacent characteristic. This second method is undeniably more computationally intense. 

Traits selected for mutation are replaced with a random value within the 

designed limits of the attribute. Figure 7 shows the mutation process. 

 
Figure 7.   Illustration of Mutation 

 

All the characteristic traits for this individual, as well as all other individuals in the 

population, will independently be tested against a small operator-selected value for the 

probability of mutation. When a3 is selected for mutation, a new trait value, a3′, is chosen 

at random to replace it in the new generation. 

4. Stopping the Process 

The final question that must be answered by the programmer is determining when 

to stop the process. If an exact solution is known, the code can be designed to stop on its 

own when it is achieved. However the use of a Genetic Algorithm in this case would be 

unnecessary!  Computational constraints, such as programming language and hardware, 

are not only factors that limit population size, individual member complexity and fitness 

calculation intricacy, but also may limit the allowed run time on scarce computing 

resources. Genetic Algorithms will rarely arrive at an exact solution anyway, regardless 

of the amount of time allotted, due to embedded encouragement in the process for 

continued population diversity. The code may include a process by which an operator or 
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the program itself may siphon off and observe the results of the process every few 

generations in order to determine if the algorithm is tracking in the desired direction or 

has achieved a solution that is good enough to be within set error limits for the task 

required. Either the programmer can then interrupt the process, or it may be programmed 

to jump out of the iterative loop. Other limiting factors may exist to curtail the run before 

the optimum solution is achieved, such as cost of constructing a physical device based on 

a Genetic Algorithm solution. By far the simplest way to end the run is to set a counter 

and run a pre-specified number of generations. At the end of these runs, the final output is 

all or part of the population of the final generation. Records may also be generated of 

previous generations, so that earlier sub-optimal solutions may be used that keep 

materials, labor and complexity within the available budget.  

C. THE ATHIN.M CODE 

A brief description of the code used in our experiment is in order, so that the 

thought processes involved in formatting a Genetic Algorithm to solve the particular 

problem of designing phased array radar antennas can be fully explored. Named Athin.m, 

the code was written by Dr. Rodney Johnson of the US Naval Postgraduate School in the 

programming language used with the commercially available mathematical and graphing 

program MATLAB.8 Dr. Johnson tailored the code for the purpose of designing answers 

to the complex but known problem of phase-only beam-shaping and steering of an array 

of randomly positioned elements. A complete program listing of the actual MATLAB 

code is provided in Appendix B.   

1. Population Design 

The first step in solving the random array problem is to determine what 

parameters are physically controlled by the antenna engineers and list these as the traits 

that characterize an individual population member. The Athin.m Code was originally 

designed to show that similar or superior antenna patterns could be realized using fewer 

elements by evolving antenna patterns optimized for maximum peak main lobe to 

average or maximum side lobe power levels with a thinly-populated array. A first round 

of experimental computations used 100 elements randomly placed in a 10λ by 10λ planar 

array. A fully populated array of this size would have four hundred elements, assuming 
                                                 

8 Copyright, Mathworks, Inc.  
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half wavelength (λ/2) spacing. In this case each individual population member had two 

hundred traits: each element location had an “on-off” bit that describes whether a 

particular location is turned on or not and a phase shift setting. For comparison, an 

antenna pattern was calculated for a broadside beam, with all phases set to zero and all 

elements turned on. As Figure 8 shows, the Athin GA code was able to thin the array by a 

further twenty percent while maintaining comparable if not slightly better performance 

for the ratio of peak main lobe to maximum side lobe by turning unnecessary elements 

off and compensating for them with phase differences at other elements. The unusual 

selection of which elements to turn off is a good illustration of the original nature of 

many GA solutions. It is in fact a difficult problem to determine which elements to turn 

on without using a GA. Currently accepted models for constructing beam patterns such as 

Method of Moments, have no inherent capability to do this. The antenna engineer or 

physicist with long experience working with arrays may be able to intuitively narrow the 

required number of trials, but it would still involve large amounts of time spent in trial 

and error and there would be no guarantee that the final result was the best possible 

solution without trying every possible permutation.  

For the purposes of experimental verification, however, the code required 

modification to fit the relatively modest means available for measurement. Cost and size 

restrictions limited the number of elements to twenty four. The locations of the elements 

were determined randomly, external to the GA. The twenty four elements could be 

selected either “on” or “off.’ Each element could also again be assigned a relative phase 

value that allows beam-shaping and steering. Therefore, each population member 

consisted of forty eight distinct pieces of information that formed a complete 

configuration for the array.  

Three runs were made, with somewhat different values for some parameters of the 

GA. There were 5000 members in each population for all three runs. The initial 

population of the first run was randomly determined, while the subsequent two runs were 

seeded with the results from the previous run.  
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* - selected (81 elements)     o - not selected (19 elements) 

 

Non-Evolved Example 

 

Evolved Example 

 

Figure 8.   GA vs. Conventional Solution for 100 Element Random Array (Johnson, 13 
March 20029) 

 

 

 

 
                                                 

9  Jenn, David and Johnson, Rodney; “New Design Codes and Methods for Random-Element Phased-
Array Antennas”; Presentation and slide show given at the US Naval Postgraduate School for 
representatives of the Office of Naval Research (ONR); 13 March 2002. 
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2. Fitness Criterion 

The measure of fitness used was the ratio of the peak power in the main lobe to an 

estimate of the average value for power in the side lobes. The anechoic chamber that was 

available for testing was nineteen feet in length from the passive device under test to the 

feed horn that transmitted the microwave signal. Our computations assumed a near-field 

approximation for a main lobe focused at this distance. The average side lobe level was 

estimated in the GA by taking the square magnitude of the electric field strength, 

approximately equivalent to power, over a set of points on the hemisphere in front of the 

antenna with a radius of nineteen feet. The number of sampled side lobe points varied 

from run to run, but generally increased from the initial run to later ones. Typical values 

started in the hundreds and increased by the final run into the thousands to ensure the 

solution converged with sufficient resolution to have confidence that there were no large 

hidden lobes in the result. The locations of these points were randomly selected from a 

uniform distribution upon the hemisphere. The number of points was user-controlled for 

each run. The first run looked at 500 points, the second 1000 and the third run examined 

2400 points. The ever-present and relatively high shoulders that are very near the main 

lobe were excluded from being valid side lobe locations on the hemisphere, and points 

selected in this region were discarded. It was considered unnecessary to make up 

additional points to replace the ones that were thrown out. 

In order to determine what these power values are, the Athin code was equipped 

with a pattern builder to generate a magnitude versus azimuth and elevation plot for the 

expected signal. In order to do this, the array factor needed to be calculated for each 

individual in the population as a part of the fitness criteria. Array factor provides the 

effective pattern if the array were made up of isotropic radiating elements. The array 

factor, Ga, in terms of field amplitudes for a randomly distributed array is given by:  
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Where N is the number of elements in the array, in this case 24. The variable ρj 

refers to the X, Y and Z coordinates of the jth element, while R is the coordinate of the 

observation point. The “on/off” bit is represented by aj, and is simply 1 if j is on, and 0 if 



21 

it is off. The phase setting of the element, in cycles, is given by Φj. The value of Z for all 

elements was zero, i.e. the surface of the ground plane was taken to be the X-Y plane. 

This was a constraint of the physical antennas we were capable of building, however, 

rather than one of the GA. The ability to include three dimensional locations in space for 

element locations demonstrates the engineering flexibility made available by using the 

GA concept as a design tool. 

In practice, the dipoles are placed over a ground plane to increase directivity. The 

effect of an infinite ground plane can be accounted for by using images. For each element 

above the X-Y plane an image dipole is introduced and the ground plane removed. The 

currents on the image dipoles are opposite of those on the source dipoles. Thus the 

equivalent problem for the array over an infinite ground plane is a two layer array in free 

space.10  

No antenna actually has a perfectly isotropic pattern, and therefore the array 

factor alone does not produce an entirely precise pattern without also multiplying it with 

an element factor, Ge, that represents the pattern created by an individual radiating 

element. The original 100 element computations used the array factor alone, but for 

comparison with experiment a more realistic calculation was necessary. A cosine theta 

(cos θj) element factor was included for completeness, and the effects of the back plane 

were modeled by replicating each element, once with a positive Z value of λ/4 and once 

with a negative Z value of –λ/4 and an additional phase shift of half a cycle.  Further 

detail could also have been incorporated by taking mutual coupling and manufacturing 

dissimilarities between elements into account, but these effects are small enough that the 

product of the array and element factors is a widely used approximation.11 The resulting 

pattern is then sampled at the chosen number of points to determine fitness. 

3. Coordinate System 

Spherical coordinates were the most convenient for expressing antenna patterns. 

Figure 9 breaks down the coordinate system used throughout the rest of this thesis.  

                                                 
10 Griffiths. (1999) Introduction to Electrodynamics, 3rd Edition. p. 121-125. 
11 Skolnik; p. 562-3. 
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Figure 9.   Coordinate System (From Johnson, 15 August 2001) 

 

4. Genetic Operations 

Reproduction, mutation and crossover were all used in the Athin code. Inversion 

was not used, as changing the order of elements’ phase and on/off bits would have an 

overly randomizing effect on the results that made little sense in promoting convergence 

on an optimum configuration. The proportions of each operator changed with each run as 

well in order to promote the introduction of “random innovation” as the population 

members began to converge and lose diversity. The ratio of operations for the three runs, 

in the order of (reproduction: crossover: mutation) was: 20:79:1, 18:80:2, and 15:80:5, 

respectively. All of the operations were performed using rank-proportional selection 

methods. 

The crossover operation was performed using two points. Two parents were 

selected proportional to rank. Then, two randomly chosen indices, i and j, were selected 

such that they fell within the range of 1 to N, with i always less than j. The values for the 

on/off bit, ak, were swapped between these two parents for k in the range i ≤ k ≤ j, as was 
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     An antenna array pattern is a 
function of direction in space, 
given by spherical coordinates 
(θ, ϕ).  For plotting, it is 
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the phase setting, Φk. Furthermore, the phases at the two ends were perturbed by a 

random amount proportional to the difference between the values for the two parents. The 

motivation for doing this was to roughly approximate the behavior that would have been 

obtained if the phases had been represented in fixed point binary, bitwise two point 

crossover had been used, and the endpoints of the interval had fallen somewhere within 

the representations of the ith and jth phases. 

The mutation operation was fairly straightforward. Indices i and j were chosen in 

the same fashion as for crossover. The elements between these two indices had their 

on/off bits replaced with a randomly selected value of either 0 or 1. Each had equal 

probability. Likewise, the phase values for elements between the endpoints were replaced 

with a new phase value, a random floating-point number between 0.0 and 1.0. 

5.  Figures of Merit  

In order to determine the relative degree of success for the results of a series of 

Genetic Algorithm runs, as well as get an idea of the computational and time resources 

required to achieve the end results, a look at some of the more important parameters and 

performance characteristics of the Athin code is in order. Particular attention should be 

paid to which factors changed between runs and which did not. Table 1 provides the 

Figures of Merit (FoM) for the three runs described. 
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Table 1.   Athin Code Figures of Merit (FoMs) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Run Number FoM 

1 2 3 

No. of Generations 36 36 15 

Population Size 5000 

Selection Method Rank-Proportional 

Rep:Cross:Mutate 20:79:1 18:80:2 15:80:5 

Fitness Sample Size 500 points 1000 points 2400 points 

Fitness Criteria Maximize Main Lobe to Average Side Lobe 

Ratio 

Run Time 

(minutes) 
400 1124 1126 

Computing 

resources 
Pentium III 500-MHz Desktop Computer 
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III. EXPERIMENTAL EVALUATION OF THE GA 
 

A. INVESTIGATION OF GENETIC ALGORITHM EFFECTIVENESS 

In order to answer the broad question of the whether Genetic Algorithms are 

suitable as design tools for advanced shipboard radars, a careful, methodical approach is 

necessary. In fact, although methods were developed to model antennas in the 1950s and 

60s, the computational resources have only become available to do so relatively recently. 

Even the smallest of these systems can be many millions of dollars each to construct, 

therefore any applied design program must be shown to reliably demonstrate the complex 

way array antennas transmit and receive radiated energy. Without prior work to expand 

upon, it was necessary to carefully document the basic functions of the Athin GA code 

and determine its suitability based on measurements of an actual physical antenna 

identical to that modeled in the program. Initially, this measurement program was 

designed to have two steps.  

B. MEASUREMENT OBJECTIVES 

The first step was designed to verify the process used to build the antenna pattern, 

an integral part of fitness assessment and therefore the validity of the final solution, both 

against experimental measurement and against rigorous numerical methods such as the  

Method of Moments (MoM). The second step was intended to demonstrate the 

effectiveness of the GA to perform beam steering. The first step was entirely successful, 

the second was not, although not as a result of any flaw in the GA. A third unanticipated 

measurement was added mid-way through the test regime that successfully explained 

minor anomalies in data from the first step. These steps will be covered in detail, in the 

order they were performed. 

C. ARRAY DESIGN AND CONSTRUCTION 

 The driving factors in selecting a test frequency were compatibility with 

the anechoic chamber at the Naval Postgraduate School and the availability of an existing 

radiating element design. Twenty four dipole elements were custom fabricated on printed 

circuits at a nominal operating frequency of 7.5 GHz. Testing on a Hewlett-Packard 

8510C Network Analyzer showed that all the elements were relatively uniform, but had 

the best return loss (input match) near 7.6 GHz (λ of 3.95cm or 1.56inches), so that was 
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adopted as our operating frequency for all testing. A square aluminum plate, fifteen 

inches (38.1 cm) on a side, was manufactured as a ground plane providing the 10λ by 10λ 

ground plane the Athin code was written for. The random locations generated for the 

elements are given in Appendix C. The origin for these coordinates was taken as the 

geographic center of the array ground plane. Figure 10 shows this arrangement 

graphically. The printed circuit elements were then soldered to sub-millimeter array 

(SMA) coaxial cable female connectors for integration with the rest of the array. 

Received signals were combined using a parallel feed beamforming network as 

shown in Figure 11. Each individual element were routed through a precisely measured 

(accurate within 1mm in length or  2.5% of λ) copper sheath rigid coaxial cable to one of 

three Anaren Model 04-0287 eight-way power dividers where it was joined by the signal 

from seven other elements. The eight-way power dividers then fed into a single Anaren 

Model 04-3040 three-way power divider that merged them into a single output.  

Since the original array plan did not include phase shifters, all phase control was 

accomplished by attempting to precisely control path length. In order to preserve as much 

uniformity in phase as possible, the rigid coaxial cable was all hand cut to precisely equal 

lengths. The ability to make the array free-standing, as well as support for the power 

dividers, was provided by a frame constructed out of thick aluminum borders from 

surplus chalk boards. Since the locations of the power dividers determined the length of 

cabling that would be required to reach the elements, a wooden frame was first 

constructed before the aluminum one was cut and the farthest distance from an element to 

an eight-way power divider, and from an eight-way power divider to  a three-way divider 

was determined using spare rigid cabling. Including a small extra length required for the 

minimum bending radius for this type of cable, the required lengths were determined to 

be nine inches and six inches respectively. The most time consuming aspect of the 

antenna’s construction was fabrication and custom fitting of the cabling. Twenty four 

nine-inch and three six-inch lengths were precisely hand cut from new copper-sheathed 

sections of cable using a jeweler’s saw and Vernier scale calipers to ensure quality 

control. After cutting, each section had SMA-male connectors soldered to the ends. The 

cables then had to be bent into place, using a special purpose bending tool to restrict the 

curvature to acceptable limits. Since the element locations were random, the cable length 
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Figure 10.   Random Array Element X-Y Plot  
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Figure 11.   Random Array Schematic Diagram 
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 was determined using the maximum distance that would be required. All the cables 

needed to be exactly the same length to form a broadside beam and minimize phase error. 

Some cables required significantly more bending than others. The phase errors this 

introduced were unavoidable, but of significantly smaller effect than if the cable length 

had been adjusted to fit the length to each element. The transverse electro-magnetic 

(TEM) waves that propagate through the rigid coaxial cable experience no significant 

phase shift as long as the minimum bending radius is observed, as the waves then remain 

perpendicular to the axis of the cable. Conversely, variance in length (∆L) that is not 

exactly equal to the wavelength, λ, immediately translates into phase error: 

λ
π )(2 Lerror

j
∆=Φ .        (3) 

The most complicated aspect of designing the antenna was developing a system 

for securing the antenna’s printed circuit elements in place. Not only did it have to hold 

the elements in place firmly during transport of the antenna, but it had to keep the T-

shaped dipole as close to a quarter wavelength above the ground plane as possible for the 

image charge on the plane to provide the best element factor. The securing system had to 

ensure that the element position could be adjusted and then held in place to guarantee the 

dipole was physically in the center of the hole in the ground plane, and thereby at the 

required X-Y coordinates. The system that eventually was adopted utilized a pair of L-

shaped brackets, with one side containing a groove for the printed circuit and the other a 

having drilled hole for attachment to the ground plane with Teflon screws and nuts. 

Plastic was preferred for fabricating the brackets, but this material and the facilities to 

work it were not available, so aluminum was used. In order to ensure that the elements 

were electrically isolated from the ground plane, a layer of sheet rubber was sandwiched 

between the ground plane and each bracket. The elements also received two or more 

layers of electrical tape along the sides where they would contact the brackets, providing 

the added benefit of increasing the friction and tightening the fit between brackets and 

element. Figure 12 shows the arrangement. 



30 

 
Figure 12.   Element Retention Method 

 

In order to secure the elements in place better, a ¼-inch zip tie was added to the 

top of the bracket. A specially machined aluminum gauge was fabricated to ensure the 

elements could be set just prior to measurement to within .0025cm (or 0.06% of λ) of the 

correct X-Y position on the ground plane and within 0.05cm, or about 5%, of the required 

λ/4 height above the plane. Tightening the bracket screws and zip tie then locked the 

element firmly in place. Figure 13 shows the final product, including phase shifters and a 

graduated elevation mounting which were added at a later date and will be discussed 

later. Comparison with the X-Y plot and schematic drawing, Figures 10 and 11 

respectively, are particularly useful in conjunction with these pictures. The point (-7.5, -

7.5) in Figure 10 is the lower left hand corner of the array in the front view in Figure 13. 

Note the configuration of the power dividers, in blue, in the back view. 
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Figure 13.   Front and Back View of Random Array 

 
1. Modifications to the Array 

In order to accomplish the third experimental objective, some modifications had 

to be made to the previously described configuration, hereafter referred to as Mod 0. In 

order to conduct evolved beam steering measurements, the array required the ability to 

control phase shift throughout the full range of the waveform, from 0º to 360º, and to tilt 

the array in elevation in order to construct a full three dimensional measured antenna 

pattern. This new configuration, Mod 1, has mechanically adjustable phase shifters at 

each element, and is the one shown in Figure 13 above. Controlling phase shift was 

accomplished by inserting Sage Labs Model 6708 DC-8GHz phase shifters into the 

transmission line just behind the dipole element. The actual 4-inch long phase shifters can 

be seen as the black rectangular boxes situated just behind each element in the back view 

of Figure 13. The aluminum frame supporting the transmission lines had to be extended 

in order to accommodate the increased line length of the new configuration. Figure 14 

shows a schematic comparison of the Mod 0 and Mod 1 transmission line configurations. 

 

jki! j 
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Mod 0 Transmission Line Configuration 

 
Mod 1 Transmission Line Configuration 

Figure 14.   Schematic Comparison of Mod 0 and Mod 1 Transmission Line 
Configurations 

 

The antenna had to be tilted backward for measurement so that the scanned beam 

cut through the horizontal (0 elevation) measurement plane, since the pedestal is only 

capable of rotating about a single axis. The elevation adjustment was accomplished by 

rigidly attaching the aluminum frame to a surplus telescope armature. This allowed for 

both a more stable platform and the control of antenna elevation accurate to within one 

degree. 

D. INSTRUMENTATION IN THE LAB AND ANECHOIC CHAMBER 

Transmission line measurements made in the lab during construction of the Mod 0 

and Mod 1 arrays and phase setting with the Mod 1 variant were accomplished by using 

an HP 8510C Network Analyzer connected to a two-port HP 8517A S-Parameter Test 

Set. Signals were generated using an HP 83651A Synthesizer-Sweeper. 

The instrumentation in the anechoic chamber was nearly identical. The signal 

generator was used to feed a Narda XC460 5.3-8.2 GHz feed horn at one end of the 
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chamber that could be rotated 90º by hand in order to measure patterns for cross-

polarizations on the device under test. The test antenna was secured to a rotating pedestal 

that sat directly in front of the transmitting feed horn at a distance of 19 feet. The pedestal 

sweeps from -90 degrees to +90 degrees using a stepper motor. The chamber is lined with 

microwave absorbent foam and has a narrow walkway that is also constructed of 

absorbent material, though probably not as effective as that used in the walls, floor and 

ceiling. The rectangular transmission feed horn can be rotated 90 degrees by hand and 

checked with a level in order to provide measurements in both cross polarizations. At 0 

degrees tilt the dipoles are vertical, perpendicular to the floor. Horizontal polarization is 

measured with the long axis of the feed horn perpendicular to the floor. Vertical 

polarization is measured with the feed horn parallel to the floor. The received signal from 

the device was sent to the chamber’s network analyzer which in turn passed it on to a 

desktop computer equipped with a Labview program with a graphic user interface for 

control of the chamber pedestal and compilation of the antenna pattern. Measured 

patterns could be exported to text or spreadsheet files, with a maximum of resolution of 

1º. Figure 15 shows the Mod 1 antenna in place on the pedestal during a test run. The 

blue material around the antenna and throughout the chamber is the microwave absorbent 

foam designed to help minimize multipath interference. 

  
Figure 15.   Mod 1 Array in Anechoic Chamber 
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It should be noted that the chamber was designed for classroom teaching rather than 

precise scientific measurements and is almost exclusively used to measure the relatively 

simple patterns with broad beams and high sidelobes. 

E. STEP 1: PATTERN BUILDER EXPERIMENTAL VERIFICATION 

Perhaps the most important aspect of using Genetic Algorithms for optimizing or 

designing complex systems is the formulation of fitness criteria that accurately reflect 

reality. In the unique problem of using GAs for designing phased array radar antenna 

systems this is an essential issue. This first experiment conducted in evaluating the 

suitability of GAs as a design code was to qualitatively measure the code’s ability to 

accurately compare population members to real world RF propagation. In order to rank 

the fitness of individual population members, the Athin Code constructed by Dr. Johnson 

builds an antenna pattern for determining the ratio of main lobe power to average side 

lobe power. The focus of this experiment is to measure this GA Pattern Builder’s results 

for a known array configuration with that of both the widely accepted means for building 

phased array patterns, Method of Moments (MoM), and with a measured pattern of a 

passive test array built to the same parameters. Method of Moments is a technique for 

solving the electric field integral equation (EFIE). The antenna surfaces are separated into 

small subdomains and the current on all subdomains is solved for simultaneously using 

matrix techniques. The subdomains are assumed short if their length is small compared to 

the incident wavelength. This ensures that the current is uniform throughout the 

subdomain. The flat plates of the antenna are also assumed to be dividable into patches 

that are small compared to the wavelength. The computed currents on the surface can 

then be added to determine the electric field at any point in space using the principle of 

superposition.12  

The parameters for the array were constrained by budget, available test facilities 

and time, and are therefore relatively unsophisticated. In fact, almost universally the 

constraints were based on hardware limits rather than any inherent requirements of the 

GA. However, in order to more fully show the flexibility of the GA as a naval architect’s 

tool, the locations of the array’s elements were selected by pseudo-random generation, 
                                                 

12 SETH Corporation (2002); “EMI/EMC Modeling Techniques – Method of Moments”; Retrieved 
April 9, 2002 from the World Wide Web; http://www.sethcorp.com/seth4.html. 
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similar to the problem of a ship being primarily designed for sea keeping and low radar 

cross section, and having the array added later. The Athin code was therefore artificially 

constrained to these X-Y coordinates, but is in fact capable of handling much more 

complex three dimensional arrays. 

1. Phase Error Measurements 

The last step in construction, and the first in taking measurements with the Mod 0 

Random Array, was to determine the inherent phase difference induced by the small 

differences in length of the cables. Since the design goal was to have the relative phases 

of all elements equal to zero, this measured experimental phase difference is considered a 

phase error that must be accounted for in later measurements. The ground plane and 

elements were removed and the device was connected to the HP 8510C Network 

Analyzer. One port of the analyzer was connected to cable from the element while the 

other was connected to the output so that the signal traveled the full length of the system 

transmission line with the exception of the dipole element itself. Table 3 provides the 

measured phase errors for each element. As can be seen, the error in each of the two 

measured cable lengths in a single transmission line during the construction phase was 

rarely more than the nominal 2mm cumulative change in path length, which correlates to 

approximately 18º of phase error. This value is exceeded in two of the lines, perhaps due 

to permanent heat expansion of the cable’s dielectric material during solder attachment of 

the cables’ end connectors or other human error in the fabrication process. These 

measured phase errors were inserted into both the Pattern Builder and Method of 

Moments for later comparison with measured antenna patterns. 

 



36 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2.   Measured Phase Error in Transmission Line 

Element 

Index   j 

Phase Error 
error
jΦ  [degrees] 

Phase Error 
error
jΦ  [cycles] 

1 -1.49 0.9959 

2 -14.76 0.9590 

3 -9.52 0.9736 

4 -10.00 0.9722 

5 -2.15 0.9940 

6 -15.70 0.9564 

7 -1.73 0.9952 

8 -5.59 0.9845 

9 1.94 0.0054 

10 0.71 0.0020 

11 -15.28 0.9576 

12 -12.54 0.9652 

13 -0.22 0.9994 

14 16.64 0.0462 

15 -5.29 0.9853 

16 -16.73 0.9535 

17 22.64 0.0629 

18 -8.10 0.9775 

19 0.85 0.0024 

20 -2.50 0.9931 

21 0.69 0.0019 

22 8.17 0.0227 

23 -10.00 0.9722 

24 -23.75 0.9340 
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Once the phase errors inherent in the transmission line were recorded, the array 

face was carefully reconnected element by element to the cabling and the complete 

antenna was transported to the US Naval Postgraduate School (NPS) anechoic chamber 

for pattern measurement. The response of the device under test is supplied to a PC-based 

graphic interface that provides a low resolution view of the antenna pattern as it is being 

measured as well as the option of exporting the full resolution data to a file. Three pattern 

measurements were taken for the Random Array, all for the full 180 degrees of sweep 

available, from endfire through broadside to endfire. All measurements had one degree 

resolution. The three measured patterns were so similar, within 0.01 dB, that only one is 

presented.  

2. Pattern Measurement and Analysis 

Prior to measuring the pattern, the measured phase errors ( error
jΦ )in the 

transmission line were included in the Athin code’s Pattern Builder using equation (2) for 

the Array Factor. Multiplying by the cosine theta element factor, a pattern was computed 

for the element locations and measured phases of the random array. Note that this did not 

require any GA runs. A pattern was also computed using Method of Moments software 

for comparison. Figures 16 and 17 show the results of the measured pattern from the NPS 

anechoic chamber for the E- and H- planes respectively plotted alongside the results from 

MoM. In both, the dashed green curve is a computed pattern for an ideal array, all phases 

set to zero, with elements at the Random Array locations. The blue curve is also a MoM 

computation, with the actual measured phase errors included. The red curve is measured 

data from the chamber. Figures 18 and 19 show the same measured E- and H- plane 

patterns as a green curve alongside the GA Pattern Builder for the Athin code in dashed 

blue. In all graphs, the value of the measured data point is marked with a red or green 

cross matching the fitted curve. With the exception of two regions, from -30 degrees to -

60 degrees on the E-plane plots and the vicinity of +30 degrees on the H-plane plots, the 

measured data appears to agree very well with both the GA Pattern Builder and Method 

of Moments. The agreement is also apparent between the GA and MoM. This is 

encouraging because it gives the programmer confidence that the results of GA 

optimization will reliably reflect the real world concerns of the antenna engineer. 
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Figure 16.   Method of Moments vs. Measured Data (E-Plane) 
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Figure 17.   Method of Moments vs. Measured Data (H-Plane) 
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Figure 18.   GA Pattern Builder vs. Measured Data (E-Plane) 
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Figure 19.   GA Pattern Builder vs. Measured Data (H-Plane) 
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3. Assessment of Measured Pattern Results 

There are several regions where agreement is not as good as it could be, however, 

and these must be addressed in detail. From the previous graphs, it is obvious there is a 

slight misalignment in the direction of the main lobe between the measured and 

computed patterns. This is the result of human inaccuracy in aligning the antenna for 

measurement in the chamber, as well as possibly the result of errors in the calibration of 

the stepper motor in the test pedestal. Antennas that are installed for measurement are 

simply placed upon the pedestal and secured with string and zip ties. Furthermore, the 

pedestal stows at its +90 degrees position when not in use so it can be accessed from the 

walkway next to it. This means that, without a benchmark, angular and positional 

alignment of the antenna with the pedestal centerline must be “eyeballed” for correctness. 

A carpenter’s square and laser pointer provided only limited assistance in proper 

positioning. With the tools available, this error is unlikely to be entirely correctable, but 

doesn’t effect agreement between MoM and the GA, and doesn’t significantly degrade 

confidence in the quality of the measured pattern. Figures 20 and 21 show the differences 

between measured curves and MoM, measured and GA and GA and MoM for E- and H- 

polarizations respectively. The high difference at wide angles can be explained as a 

known problem of the anechoic chamber used. The measurement accuracy is known to 

become highly suspect at small values below -25 dB down.13 The narrow spikes in both 

graphs are explained by the angular positioning problem just described. Subtracting the 

values of two slightly misaligned lobes creates a narrow spike which crosses the 0 dB 

axis then peaks sharply again on the opposite side. Of the great interest is the difference 

between the GA and MoM. In the E-Plane there is complete agreement (effectively 0 dB 

difference). However, with the electric field now in the same direction as the dipole, the 

cross-polarization shows a quadratic shape. The MoM calculations are exact, while the 

GA only approximates the element pattern and assumes it is identical for all dipoles and 

in both polarizations, using a cosine theta factor for all. In fact, the best fit to the 

measured pattern shows that the cosine theta element factor fits the E-plane cut nicely, 

while a square root cosine theta [(cos θj)1/2] would have fit the measured data for the H- 

                                                 
13 Jenn, David; Written feedback on the results of first chamber measurement, 17 November, 2001. 
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Figure 20.   Power Difference for E-Plane 
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Figure 21.   Power Difference for H-Plane 
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plane much better. As a result of this measurement, the new element factor was included 

in the Athin code for H-plane cuts. 

The two previously mentioned regions of attenuation are more troubling. At +30 

degrees in the H-plane and around -30 to -60 in the E-plane there is significant loss, but 

the shape of the side lobe is preserved in the pattern measurement. Previous experiences 

with the NPS anechoic chamber have shown that at extremely low power, around -25 dB 

below the main lobe, the equipment becomes less accurate as the signal becomes more 

embedded in noise. Another theory was that these attenuation regions were a result of 

multipath returns from areas within the chamber that were worn or poorly designed. It 

was the quest to examine this effect more closely that created an intermediate step that 

had not been anticipated. 

F. STEP 2: EXPERIMENTAL EXAMINATION OF CHAMBER EFFECTS 

In order to examine the possibility of multipath interference causing the two 

anomalous regions in the measured patterns, a thorough examination of the chamber was 

made. This was deemed important because of the high probability that such effects would 

also effect future work.  Sources of multipath interference were indeed discovered, 

although not quantified definitively, that seemed to explain the attenuation. Figure 22 

shows the basic layout of the chamber, which may make explanation of the multipath 

scattering centers more clear. Areas of suspected multipath scattering are circled in red. 

 
Figure 22.   Plan Diagram for Layout of NPS Anechoic Chamber 
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1. The H-Plane Attenuation 

The probable source of the +30 degree region of attenuation in the H-plane 

pattern, which drops 7 dB below expected, was relatively easy to find.  Using a laser 

pointer and protractor narrowed to the region in question. The laser’s beam was 

immediately noticed to fall on the seam of the door to the chamber’s control room at an 

azimuth of +30 degrees. Placing a flat hand mirror on the walkway at this angle also 

caused the laser beam to reflect directly at the door seam. Since this door is heavily 

traveled, it was inspected for damage. There is a conductive coating that lines the walls of 

the chamber beneath the absorbent material in order to ground any stray induced currents 

rather than reflecting the RF. This metallic covering is exposed in the seams of doors 

where no absorbent material can be placed. Not surprisingly, it was severely worn around 

the control room door. Suspicions that this is the cause of the attenuation region in the H-

plane patterns would be very well founded. Figure 23 is a photograph of the damaged 

material around the control room door. A photo of the seam to the much less used back 

door into the storage space is included for comparison. 

  

Control room door showing damage to 

conductive coating 

Storage door showing intact conductive coating 

Figure 23.   Damage to Chamber Control Room Door 
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2. The E-Plane Attenuation 

The E-plane attenuation was of concern because of the broad range of angles it 

covered and because a visual survey of the chamber yielded no definitive flaws or clues 

as to the cause. The only physical feature that correlated with the angular spread was the 

junction of the ceiling and the wall. Such a basic design flaw would have been noticed by 

the students who use the chamber for class experiments. At this point a novel idea 

presented itself: the destructive interference might be dependent on the reflection of the 

array face itself, as well as the wall-ceiling junction. The thin population of the array 

would exacerbate this condition, leaving more of the ground plane open for reflection. 

Figure 24 shows the results of a novel approach to determining the cause. 

 
Figure 24.   Attenuation in Baseline Feed horn Measurement 

 

The standard Narda feed horn was mounted on the receive side and three E-plane 

patterns were measured. All were virtually identical and showed no visible distortion. 

The main lobe was basically symmetrical. A fourth measurement was made with the 

Random Array sitting “piggy back” on top of the receiving feed horn. The array was not 

connected to the measurement system and was not in physical contact with the receiving 
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feed horn. This measurement yielded a telltale distortion and power loss of the main lobe 

shoulder at between 35º and 55º, in the same general region as the attenuation found in 

previous measurements with the array. The region in question from Figure 24 is 

magnified in Figure 25 below. 

 
Figure 25.   Expanded View of Attenuation Region  

 

Although not as dramatic as the loss seen in the Random Array measurements, 

this can be explained by the differences between horn and array antenna patterns. In 

effect, the attenuation of the feed horn occurs in the main lobe, due to the significantly 

broader pattern of the horn. The interference may also be stronger because reflection off 

the array face is occurring right next to the measuring elements, vice several wavelengths 

away in the case of the piggyback configuration, in effect exacerbated by image charges 

on the face of the ground plane in the same way the dipole elements themselves use an 

image dipole to amplify gain. However computing this notch would require complete 

mapping of the field everywhere in the chamber in order to determine exactly where all 
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the reflections originate and be able to calculate the net image charge for a given location 

on the ground plane as a result. 

 

G. STEP 3: BEAM-STEERING WITH THE GA 

The final measurements that remained within the scope of this effort to verify the 

use of Genetic Algorithms as design tools was to test the code’s ability to optimize the 

array for steering angles off of broadside. Several changes had to be made to the array in 

order to do this. This necessitated the Mod 1 changes to the array in order to set the 

solutions determined by the Athin Genetic Algorithm into the antenna and measure a 

three dimensional beam pattern. The new knowledge about the limitations of the chamber 

provided guidance on where not to steer the beam in order to avoid attenuation induces 

by multipath propagation. The representative Figures of Merit given in Chapter II were 

for the runs resulting in a solution for this beam steering problem. However, although the 

GA worked smoothly, the hardware side proved less cooperative and no reliable 

measured data was available for comparison. 

1. Alterations to the Array with Disappointing Results 

Due to both a limited budget and finite time to graduation that prohibited learning 

complicated digital control software, mechanical analog phase shifters were selected for 

installation. Initial testing of the phase shifters alone on the network analyzer showed 

what would eventually serve as the show stopper for collecting measured data during this 

step. The phase response was non-linear. When the adjustment screw was turned, the 

phase moved linearly along a saw toothed wave as expected, but would reach a point 

where the saw tooth wave would begin to distort. Continuing to turn the screw caused the 

measured phase to peak and finally return back in the original direction. This rendered 

whole ranges of phases unreachable. Figure 25 shows the expected and actual waveforms 

as seen on the network analyzer. To make matters worse, the point where the saw-toothed 

wave distortion was centered was slightly different for each individual phase shifter by 

itself, but once connected to the transmission line it appeared to become highly dependent 

on the incoming phase of the line it was connected to. Consequently, three of the required 

phase settings fell directly on top of the non-linearity, and swapping out the phase shifter 

with one from another element’s line had little or no effect on the phase response. This 
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was not expected as the manufacturer’s data sheet described a linear relationship that 

should have given 547.2º of phase shift at the operating frequency of 7.6 GHz. 

 

Expected Frequency-Phase Response 

 

Representative Measured Frequency-Phase Response 

Figure 26.   Frequency-Phase Response Characteristics of Sage Phase Shifters 

Also, once installed the shifters were extremely sensitive to vibration. Despite 

mechanical attempts to minimize phase error, such as using Loc-Tite on connectors and 

the adjustment screw, the slightest perturbation caused phase swings in excess of 30 

degrees and these variations rarely settled out to their preset value. This effect had not 

been observed with the previous Mod 0 configuration. Phase settings that were in the 

vicinity of the non-linear point obviously were effected the most.  
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 The technique necessary for setting the phases was highly intrusive. Like 

the initial phase error measurements, the array face was removed, along with the 

elements, and the phase shift through all the components of the transmission line except 

the actual dipoles was measured using the network analyzer. The phases were set using 

the adjustment screw and then frozen in place with a drop of glue. Once this process had 

been completed for all twenty four elements, the ground plane and elements had to be 

reconnected. Perhaps the largest source of error came from the reconnection of the 

elements and ground plane to the coaxial plumbing after setting the phases. Although the 

work was done methodically and with great care, it still involved putting large hands into 

the confines of the cabling behind the ground plane. Unlike previous experience with the 

Mod 0 array, this area was now full of bulky phase shifters and errors may have been 

introduced at this stage as a result. Consequently, confidence going into the measurement 

process was not as high as for the first Random Array measurement. A series of ten 

patterns were taken but no discernable main lobe could be found. The measured antenna 

pattern was effectively noise. Time did not permit any troubleshooting to determine the 

exact problem. 
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IV. CONCLUSIONS 

A. EXPERIMENTAL SUMMATION 

Although the final experiment was not completed, due to mechanical problems 

and time limitations, the earlier results of the experiment lend credence to the idea of 

using Genetic Algorithms as a tool for advanced phased array design work. The pattern 

builder was shown to have good agreement with rigorous computational methods 

(Method of Moments) as well as with the real world measurements of a test array built to 

the same parameters. There were two anomalous regions that could not be explained as 

errors in the device or with either the GA or MoM software. The conformity in shape for 

all three patterns in these regions caused the need to explore the possibility of a cause of 

attenuation in the measurement chamber itself. Such causes were found in the form of 

multipath interference. Damage was found in a portion of the chamber directly aligned 

with the azimuth angle that showed attenuation in one region. The other region could be 

recreated with a different test device. 

The end result of these measurements is the validation of the GA’s Pattern 

Builder function. This ensures that the fitness assessment of the Athin code is firmly 

grounded in both theory and reality, and consequently solutions to complex antenna 

design problems that result out of this code can be seen as fundamentally serviceable in 

reality.  

However, like the development of any design tool for complex, expensive 

systems, validation of a single component is not enough to place the tool unequivocally 

in service. Further work needs to be done to develop the full potential of GA’s to design 

antennas, both in terms of building confidence in the code’s fidelity and in it’s superiority 

over or in conjunction with current methods. 

B.  RECOMMENDATIONS FOR FUTURE WORK 

1.  Beam Steering and Shaping 

The aborted attempt of this thesis to demonstrate the flexibility of the GA when 

applied to the relatively mundane task of steering the main beam should be a first step in 

future work. A more interesting and less trivial natural follow on to steering the beam 
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would be shaping it for a specific task. The GA could be used to generate a null at a 

desired location for example, in order to demonstrate the ability to counteract jamming or 

interference from that direction.  

2.  Dual Frequency Array 

An even more exciting concept would be the creation of a dual frequency array, 

that contains elements of two separate wavelengths on the same ground plane. The 

placement of the second set of elements could either be random or evolved by the GA 

from the space left available around the first Random Array. This might simulate the 

restrictions placed on putting a new array on an existing ship design. The Athin code will 

definitely have to be expanded to include the effects of mutual coupling between 

elements, but the effort will provide solutions to a non-trivial problem that is currently 

avoided altogether by industry due to its complexity. The idea that a ship might have her 

communications and sensor needs scattered throughout the hull and superstructure in a 

distributed array is attractive for several of the reasons enumerated in the introduction. 

Work is already underway at Naval Postgraduate School pursuing a dual 

frequency array with receive elements of the COTS semiconductor variety. Successful 

testing of a GA designed array that can successfully overcome the problems associated 

with mutual coupling would be significant progress toward a truly multi-function array, 

possibly including communications as well as radar in the capabilities of future array-

based systems. 

3. Conformal Array 

The ability to be able to make up an array from elements that are dispersed in 

more than two dimensions is inherent to the distributed ship wide array concept. As well 

as the advantages of having the sensor’s elements widely dispersed about the ship, the 

ability to group elements in non-planar configurations would pay dividends in reduction 

of radar cross section and enhanced surveillance capabilities for small vessels where 

topside area is limited.  

4. USS Spanagel : The Building Wide Array 

Perhaps one of the more innovative and interesting ideas is the implementation of 

the multi-frequency distributed array on the facade of  Spanagel Hall, where the Physics 
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and Electrical Engineering departments are housed at the Naval Postgraduate School. 

Elements would be placed at either random or evolved locations in the windows and on 

the roof of the building, simulating the hull and superstructure of a ship, in a distributed 

array. The array would be used to track surface vessels in Monterey Bay and aircraft over 

flying the building as part of the routine traffic through Monterey Airport. I would 

recommend the use of at least two different RF frequencies to show the advantages in 

terms of removing blind ranges and speeds. The full length of the building should be used 

as well in order to demonstrate the advantage in angular resolution achieved with a large 

aperture, even at low frequencies. A third frequency for voice communications would 

reinforce the benefits of such a configuration to the Navy. The problem of real time 

mensuration of the elements’ location may also need to be addressed in this step, since 

weather and other factors will affect such a large array, and would even more so on a ship 

at sea.  

C. A TOOL FOR THE FUTURE 

The need for a robust and flexible design tool for shipboard sensors is there now. 

Genetic Algorithms have the potential to become that tool. As the requirements of the 

radar designer change, the Genetic Algorithm is easily adapted to meet them. The 

successful validation of a significant aspect of the fitness assessment process presented in 

this thesis is the first step in making such a design tool available to the architects of future 

sensor systems.  
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APPENDIX A: GLOSSARY OF TERMINOLOGY 

COTS Commercial Off The Shelf 

dB Decibels 

DD(X) US Navy Next Generation Surface Combatant – Destroyer 

f Frequency 

FAD Fleet Air Defense 

fitness Computed quantifiable score of the effectiveness of a population 

member as a solution to the given problem 

GA  Genetic Algorithm 

GHz  Gigahertz (109 cycles/second) 

generation A complete GA reproductive cycle including evaluation of fitness, 

selection and the formulation of a new population for the next 

generation. 

HP  Hewlett-Packard 

individual A discrete set of bit strings and/or vectors that forms a complete 

solution to the given problem as evaluated by the fitness function. 

IEEE  Institute of Electrical and Electronics Engineers  

λ  Lambda – Wavelength 

LCS  Littoral Combat Ship 

MFAR  Multi-Function Array Radar 

MoM  Method of Moments 

Φ  Phi – Phase 

population All the individuals in a given GA run. 

RCS  Radar Cross Section 
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RF  Radio Frequency 

SUW  Surface Warfare 

TBMD  Theater Ballistic Missile Defense 

TR  Transmit/Receive 
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APPENDIX B: THE ATHIN.M CODE LISTING 

%  
%    The main function is: 
%         athin 
%  
% and the following 10 additional functions are defined further down in 
% the file: 
%         apattern        arect           cross           makepattern 
%         mutate          randpop         rect_sph        roulette 
%         rslav           sqcirca 
%  
%     The function "apattern" computes values of an array pattern given 
% (1) locations and phases for the "on" elements, and 
% (2) points on the unit sphere (direction vectors) at which to sample 
% the pattern.  It is invoked once for each individual in the 
population 
% in each generation. 
%     "arect" is a plotting function called once each generation to 
% display a 3-D plot of the current putative best-of-generation 
pattern. 
%     "cross" is a genetic operator, ("crossover") called for a 
% specified fraction of the individuals in each generation to help 
% create a new generation. 
%     "makepattern" is a cover function for "apattern". 
%     "mutate" is another genetic operator, called for a specified 
% fraction of the individuals in each generation to help create a new 
% generation. 
%     "randpop" is called once initially to create an initial 
% population, "generation 0". 
%     "rect_sph" computes rectangular coordinates from spherical 
% coordinates; it is called once during initialization. 
%     "roulette" is used for fitness-proportional (or rank-
proportional) 
% selection.  It is called once each generation with a vector of 
% fitness values (or ranks) after these have been computed for the 
% entire current generation.  It is used in selecting the members of 
the 
% current generation that will participate (via copying, mutation, or 
% crossover) in the creation of the next generation. 
%     "rslav" ("relative sidelobe level---average") computes a fitness 
% function given a pattern.  It is invoked once for each individual in 
% the population in each generation. 
%     "sqcirca" computes a grid of points for plotting purposes.  It is 
% used once per generation in conjunction with "makepattern" and 
% "arect" to display a plot of the current best-of-generation pattern. 
%  
%     Probably a large proportion of the total computer time expended 
is 
% accounted for by the single statement 
%         pat = sum(exp((2i*pi*x) * u), 1); 
% on line 16 of "apattern".  This is a simplification of the code that 
% is actually run, as the matrix product 
%         (2i*pi*x) * u 
% can be large enough to exceed memory limitations on the PC that I am 
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% using.  The actual code is a loop that breaks the computation into 
% several chunks. 
%  
%     The dimensions of "x" are <number of array elements> by 4; the 
% dimensions of "u" are 4 by <number of points at which to sample the 
% pattern>. 
%   
%     The following Matlab functions are used in the code.  Some are 
% built-in primitives, and some are defined functions supplied with 
% Matlab: 
%         abs             cat             ceil            clock 
%         colormap        complex         conj            cos 
%         cumsum          diff            exp             figure 
%         gray            imag            length          log10 
%         max             meshgrid        min             mod 
%         nargin          pause           permute         plot 
%         prod            rand            randint         randperm 
%         real            rep             repmat          reshape 
%         round           set             shading         sign 
%         sin             size            sort            sqrt 
%         sum             surfl           zeros 
%  
%======================================================================
= 
 
function [on, ph, fitness] = athin(xyz, npop, ngen, rep, seed) 
    % xyz [<number of elements>, 3]:    element locations (units of 
    %                                       lambda) 
    % npop:                             population size 
    %   or [npop, ncases], where 
    %   npop:                           population size 
    %   ncases (default 200):           number of pattern values for 
    %                                       fitness estimation 
    % ngen:                             number of generations 
    % rep [3]:                          proportions of copy, crossover, 
    %                                       and mutation operation used 
    %                                       in breeding a new 
population 
    %   [ncopy, ncross, nmutate], where 
    %   ncopy:                          proportion of copy operations 
    %   ncross:                         proportion of crossover (�  2) 
    %   nmutate:                        proportion of mutations  
    % seed {[<number of elements>, <number of individuals>], 
    %       [<number of elements>, <number of individuals>]} 
    %       (optional): 
    %                                   specific individuals to include 
    %                                       in initial population 
    % Returns 
    %    on [<number of elements>, npop]: 
    %                                   "on" values (boolean) for last 
    %                                       generation (entire 
    %                                       population) 
    %    ph [<number of elements>, npop] 
    %                                   phase values for last 
generation 
    %                                       (in cycles) 
    %    fitness [npop]:                fitness values for last 
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    %                                       generation 
    % Supplying {on, ph} from one run as the "seed" argument for 
another 
    %   invocation permits a run to be continued, possibly with 
    %   different values of some parameters. 
                    
    starttime = clock; 
    th0 = 0; ph0 = 90;              % steering direction (azimuth, 
elev) 
    u0 = rect_sph([1; th0; ph0]);   % steering direction (rectangular) 
    L = [7.5 7.5 0];                % determines size of neighborhood 
                                    %   of steering direction excluded 
                                    %   from sidelobe estimation 
    if length(npop) > 1 
        ncases = max(npop(2), 1); 
    else 
        ncases = 200; 
    end 
    npop = max(npop(1), 1); 
    ngen = max(ngen, 0); 
    rep = rep/sum(rep); 
    ncross = round(rep(2)*npop); 
    if mod(ncross, 2) == 1 
        ncross = ncross - 1; 
    end 
    ncopy = round(sum(rep(1:2))*npop) - ncross; 
    nmutate = npop - ncross - ncopy; 
    for g = 0:ngen                  % for each generation: 
        if g == 0                   % first time, create initial 
                                    %   population 
            if (nargin < 5) 
                [on, ph] = randpop(size(xyz), npop); 
            else 
                on0 = seed{1}; 
                ph0 = seed{2}; 
                [on, ph] = randpop(size(xyz), npop - size(on0, 2)); 
                on = [on0==1, on==1]; 
                ph = [ph0, ph]; 
            end 
        else                        % breed new population from old 
            [dum, rk] = sort(fitness);  % compute ranks from fitnesses 
            [dum, rk] = sort(rk); 
            sel = roulette(rk, npop);   % select parents (rank-based) 
            on = on(:, sel); 
            ph = ph(:, sel); 
            for i = ncopy+1 : 2 : ncopy+ncross-1 
                [on(:, [i, i+1]), ph(:, [i, i+1])] = ... 
                    cross(on(:, [i, i+1]), ph(:, [i, i+1])); 
            end                         % do crossovers 
            for i = ncopy+ncross+1 : npop 
                [on(:, i), ph(:, i)] = mutate(on(:, i), ph(:, i)); 
            end                         % do mutations 
        end 
        fitness = zeros(1, npop);   % fitness computation 
        for i = 1:npop                  % for each individual: 
            xyzph = [xyz, ph(:, i)];        % append phases to 
locations 
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            xyzph = xyzph(on(:, i), :);     % select "on" elements 
            r = rand([1, ncases]);          % generate random set of 
            th = rand([1, ncases])*(2*pi);  %   directions (points on 
            w = sqrt(1 - r);                %   unit sphere) for 
pattern 
            r = sqrt(r);                    %   evaluation 
            uvw = [r.*cos(th); r.*sin(th); w]; 
            uvw = [uvw, u0];                % include steering 
direction 
            pat = apattern(xyzph, uvw);     % evaluate pattern 
            fitness(i) = rslav(pat, u0, uvw, L); 
                                            % estimate ratio of average 
                                            %   sidelobe level to main 
                                            %   lobe 
        end 
        figure(3);                          % plot fitness distribution 
        plot(10*log10(sort(fitness))); set(gca, 'Ylim', [-10 25]); 
        [bestf, besti] = max(fitness);      % plot "best" pattern 
        uvw = sqcirca(1/64); 
        pat = makepattern(xyz, on, ph, besti, uvw); 
        arect(pat, uvw); 
        gen_bestf_altbest_numon = ... 
            [g, bestf, rslav(pat, u0, uvw, L), sum(on(:, besti))] 
                                            % print: generation number, 
                                            %   "best" fitness, 
                                            %   alternative estimate 
for 
                                            %   "best" pattern, 
                                            %   number of "on" elements 
        pause(0.3); 
 
        if 0                                % placeholder for 
                                            %   alternative stopping 
                                            %   criterion 
            break; 
        end 
    end 
    start_end = [starttime; clock]          % print starting and 
                                            %   stopping times 
 
%======================================================================
= 
% "apattern" computes values of an array pattern 
 
function pat = apattern(x, u) 
    % x [<number of "on" elements>, 4]: locations and phases of "on" 
    %                                       elements (phases in fourth 
    %                                       column)  
    % u [3, <number of directions>]:    points on unit sphere 
(direction 
    %                                       vectors) at which to sample 
    %                                       pattern 
    % Returns 
    %   pat [1, <number of directions>]: 
    %                                   array of pattern values 
    % Alternatively, <number of directions> may be replaced with a list 
    %   of two (or more) dimension, which then become the shape of the 
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    %   result. 
 
    s = size(u); s = s(2:end); 
    if length(s) > 1 
        u = u(:,:); 
    end 
    if size(u, 1) < 3 
        u(3,:) = sqrt(max(0, 1 - sum(u.^2, 1))); 
    end 
    if length(size(x)) > 2 
        L = size(x, length(size(x))); 
        x = reshape(x, prod(size(x))/L, L); 
    end 
    if size(x, 2) > 3 
        u(4,:) = 1; 
    end 
    pat = sum(exp((2i*pi*x) * u), 1); 
    pat = pat.*conj(pat)/size(x,1); 
    if length(s) > 1 
        pat = reshape(pat, s); 
    end 
 
%----------------------------------------------------------------------
- 
% "arect" displays a 3-D plot of a pattern. 
 
function arect(pat, uvw, fig) 
    % pat: [m, n]                       array of pattern values 
    % uvw: [3, m, n]                    corresponding direction vectors 
    %                                       where m and n are the 
height 
    %                                       and width of the array of 
    %                                       pattern values.  Each 
column 
    %                                       is a triple of coordinates 
    %                                       [u,v,w]. 
    % fig (optional):                   figure number 
 
    if nargin < 3 
        fig = 1; 
    end 
    s = size(uvw); s = s([2 3]); 
    figure(fig); 
    u = reshape(uvw(1,:), s); 
    v = reshape(uvw(2,:), s); 
    surfl(u, v, max(-10, 10*log10(max(pat,realmin)))); 
    zl = [-10, 5*ceil(2*log10(max(max(pat))))]; 
    set(gca, 'Zlim', zl); 
    shading('interp'); 
    colormap(gray(64)); 
 
%----------------------------------------------------------------------
- 
% "cross" performs genetic crossover operation: breeds new individuals 
%   from pairs of existing individuals (two children from each pair of 
%   parents 
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function [on, ph] = cross(on, ph) 
    % on [<number of elements>, 2]:     "on" values (boolean) for two 
    %                                       parents 
    % ph [<number of elements>, 2]:     phase values for two parents 
    % Returns 
    %   on [<number of elements>, 2]:   "on" values (boolean) for two 
    %                                       children 
    %   ph [<number of elements>, 2]:   phase values for two children 
 
    lims = randint(1, 2, [1, size(on, 1)]); 
    lim1 = min(lims); 
    lim2 = max(lims); 
    t = on(lim1:lim2, 1); 
    on(lim1:lim2, 1) = on(lim1:lim2, 2); 
    on(lim1:lim2, 2) = t; 
    t = ph(lim1:lim2-1, 1); 
    ph(lim1:lim2-1, 1) = ph(lim1:lim2-1, 2); 
    ph(lim1:lim2-1, 2) = t; 
    d = diff(ph([lim1, lim2], :), 1, 2); 
    d = (mod(d+0.5, 1) - 0.5) .* (rand(2, 1) - 0.5); 
    ph([lim1, lim2], :) = ph([lim1, lim2], :) + [d, -d]; 
 
%----------------------------------------------------------------------
- 
% "makepattern" computes values of an array pattern; cover function for 
%   apattern 
 
function pat = makepattern(x, on, ph, i, uvw) 
    % x [<number of elements>, 3]:      element locations (units of 
    %                                       lambda) 
    % on [<number of elements>, npop]:  "on" values (boolean) for 
    %                                       population (return from 
    %                                       athin) 
    % ph [<number of elements>, npop]:  phase values for population 
    %                                       (return from athin) 
    % i:                                index of individual 
    % uvw [3, <number of directions>]:  points on unit sphere 
(direction 
    %                                       vectors) at which to sample 
    %                                       pattern 
    % Returns 
    %   pat [1, <number of directions>]: 
    %                                   array of pattern values 
    % Alternatively, <number of directions> may be replaced with a list 
    %   of two (or more) dimension, which then become the shape of the 
    %   result. 
 
    pat = apattern([x(on(:,i),:), ph(on(:,i),i)], uvw); 
 
%----------------------------------------------------------------------
- 
% "mutate" performs genetic mutation operation: creates new individuals 
%   by introducing random changes in existing individuals 
 
function [on, ph] = mutate(on, ph) 
    % on [<number of elements>, 1]:     "on" values (boolean) for one 
    %                                       individual 



65 

    % ph [<number of elements>, 1]:     phase values for one individual  
    % Returns 
    %   on [<number of elements>, 1]:   "on" values (boolean) for 
    %                                       mutated individual 
    %   ph [<number of elements>, 1]:   phase values (boolean) for 
    %                                       mutated individual 
 
    lims = randint(1, 2, [1, size(on, 1)]); 
    lim1 = min(lims); 
    lim2 = max(lims); 
    on(lim1:lim2) = rand(lim2-lim1+1, 1) >= 0.5; 
    ph(lim1:lim2) = rand(lim2-lim1+1, 1); 
 
%----------------------------------------------------------------------
- 
% "randpop" creates a random population of individuals 
 
function [on, ph] = randpop(size, npop) 
    % size:                             size of element location (xyz) 
    %                                       array (only the first 
    %                                       dimension is used, i.e. the 
    %                                       number of elements). 
    % npop:                             population size 
    % Returns 
    %   on [size(1), npop]:             "on" values (boolean) for 
    %                                       population 
    %   ph [size(1), npop]:             phase values for population 
 
    on = rand([size(1), npop]) >= 0.5; 
    ph = rand([size(1), npop]); 
 
%----------------------------------------------------------------------
- 
% "rect_sph" computes rectangular coordinates (x, y, z) from spherical 
%   coordinates (rho, theta, phi): radial distance, azimuth, and 
%   elevation 
 
function xyz = rect_sph(rtp) 
    % rtp [3, ...]:                     array of spherical coordinates 
    % Returns 
    %   xyz [3, ...]:                   array of rectangular 
coordinates 
 
    rtp([2 3], :) = rtp([2 3], :)*(pi/180); 
    r = rtp(1,:).*cos(rtp(3,:)); 
    xyz = [r.*cos(rtp(2,:)); ... 
           r.*sin(rtp(2,:)); ... 
           rtp(1,:).*sin(rtp(3,:))]; 
    xyz = reshape(xyz, size(rtp)); 
 
%----------------------------------------------------------------------
- 
% "roulette" performs roulette-wheel selection 
 
function sel = roulette(fitness, n) 
    % fitness (row vector):             fitness values.  For rank- 
    %                                       proportional selection, 
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    %                                       supply vector of ranks. 
    % n:                                number of individuals to 
    %                                       select 
    % Returns 
    %   sel [n]:                        indices of selected individuals 
 
    s = cumsum(fitness); 
    r = sort(rand(1, n)) * s(length(s)); 
    [r, p] = sort([r, s]); 
    sel = zeros(size(p)); sel(p) = [1:length(p)]; 
    sel = sel(1:n) - [0:n-1]; 
    sel = sel(randperm(n)); 
 
%----------------------------------------------------------------------
- 
% "rslav" estimates the ratio of average sidelobe level of a pattern 
%   to main-lobe level 
 
function L = rslav(pat, u0, u, g) 
    % pat [1, <number of directions>]:  pattern values 
    % u0 [3, 1]:                        main-beam steering direction 
    % u [3, <number of directions>]:    directions 
    % g [1, 3]:                         criterion for excluding points 
    %                                       "too close" to the main- 
    %                                       beam direction from the 
    %                                       average sidelobe estimate. 
    %                                       Let u be a direction 
vector. 
    %                                       If the vector (u-u0).*g 
    %                                       (coordinate-by-coordinate 
    %                                       product) has magnitude 1 or 
    %                                       less, the pattern value for 
    %                                       direction u is excluded. 
    %                                       E.g. g = [7.5 7.5 0] 
    %                                       excludes a point u unless 
    %                                       the distance of its 
    %                                       projection into the xy-
plane 
    %                                       from that of the steering 
    %                                       direction is greater than 
    %                                       1/7.5. 
    % Alternatively, pat may be an array of 2 or more dimension (not a 
    %   row vector) and the shape of u may be [3, size(pat)]. 
    % Returns 
    %   L:                              estimated ratio (compute 
    %                                       10*log10(L) to convert 
    %                                       to dB) 
 
    u0 = reshape(u0, [length(u0), 1]); 
    g = reshape(g, [length(g), 1]); 
    s = size(u); s(1) = 1; 
    d = sum(((u - repmat(u0, s)).*repmat(g, s)).^2); 
    m = sum(pat(d > 1)); 
    n = max(pat(d <= 0.0025)); 
    if m == 0 | length(n) == 0 
        L = 0; 
    else 
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        L = n*sum(d(:) > 1)/m; 
    end 
 
%----------------------------------------------------------------------
- 
% "sqcirca" computes a grid of points for plotting purposes. 
% It uses a mapping of the square -1 <= x <= 1, -1 <= y <= 1 onto 
% the unit hemisphere u^2 + v^2 + w^2 = 1, w >= 1.  
% The density of projections of grid points onto the unit circle in 
% the uv-plane is approximately uniform. 
% 
function u = sqcirca(d) 
    % d:                                spacing of grid points in the 
    %                                       square.  The number of grid 
    %                                       points is n^2, where n is 
    %                                       floor(1+1/d) or ceil(1/d), 
    %                                       e.g. 129^2 = 16641 when 
    %                                       d = 1/64. 
    % Returns 
    %   u [3, n, n] (n as above):       array of coordinate triples 
 
    x = [-1:d:1]; 
    x = x + 0.5*(1 - x(end)); 
    [x, y] = meshgrid(x); 
    p = (abs(x) > abs(y)); 
    q = ~p & (y ~= 0); 
    u = x;  v = x; theta = x; 
    theta(p) = ((pi/4)*y(p)) ./ x(p); 
    theta(q) = ((pi/4)*x(q)) ./ y(q); 
    u(p) = x(p) .* cos(theta(p)); 
    v(p) = x(p) .* sin(theta(p)); 
    u(q) = y(q) .* sin(theta(q)); 
    v(q) = y(q) .* cos(theta(q)); 
    w = sqrt(max(0, 1 - u.^2 - v.^2)); 
    u = cat(3, u, v, w); 
    u = permute(u, [3 1 2]); 
 
%======================================================================
= 
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APPENDIX C: LOCATION OF RANDOM ARRAY ELEMENTS 

Table 3.   Random Array Element Locations 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Element 

Number 

X-Coordinate 

[inches] 

Y-Coordinate 

[inches] 

Element 

Number 

X-Coordinate 

[inches] 

Y-Coordinate 

[inches] 

1 1.4182 -3.1934 13 -6.0295 -5.1197 

2 1.9821 3.9394 14 3.2750 -0.6326 

3 3.0061 2.1820 15 0.5112 -3.9564 

4 5.1609 -6.3229 16 -1.8416 1.5413 

5 1.7698 0.8005 17 5.4489 5.0811 

6 -3.6236 -0.5907 18 -3.4405 5.2915 

7 6.6931 5.2643 19 0.9727 3.3614 

8 1.9670 -2.8319 20 -4.7703 -1.5505 

9 -3.7821 -5.6546 21 6.7267 -0.2067 

10 2.3215 6.2883 22 4.0856 3.9288 

11 -5.1139 5.4905 23 4.6624 -3.8641 

12 -6.6851 0.7956 24 -0.8178 3.0863 
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